Learn how to calculate Ti 83 Exponential Regression Calculator - Tutorial

Learn how to calculate Ti 83 Exponential Regression - Definition and Example

Definition :

Exponential regression using Ti 83 is used to calculate an equation which best fits the connection between the collections of indiscriminate variables.

Formula:

y = a x bx
Where,

The variables a and b denotes the coefficients for the exponential.

Example :

Calculate Exponential Regression Equation(y) for the given data points in L1 and L2. The numbers under the L1 heading are times in minutes. The numbers under the L2 heading are temperatures in degrees Fahrenheit.

L1L2
0140
5129
10119
15112
To Find :

Calculate a,b coefficients for the exponential Regression.

Solution :

First, let us calculate the value of a, b.

Step 1

b = e (n x Σ L1log(L2) - Σ (L1) x Σ log(L2) ) / (n x Σ (L1)2 - Σ (L1) x Σ (L1) ) n-Total no of samples. ΣL1 log(L2) = 0 x log(140) + 5 x log(129) + 10 x log(119) + 15 x log(112) = 62.0466 Σ log(L2) = log(140) + log(129) + log(119) + log(112) = 8.3814 Σ L1 = (0 + 5 + 10 + 15) = 30 Σ L12 = (0 2 + 5 2 + 10 2 + 15 2) = 350 b= e(4 x 62.0466 - 30 x 8.3814) / (4 x 350 - 30 x 30) b= e-0.0065112 b= 0.9935

Step 2

a = eΣ log(L2) - Σ (L1) x log(b) / n a = e(8.3814 - 30 x log(0.9935) ) / 4 a = e2.116590964 a = 8.3028

Step 3

Now, substitute the values of a, b in the formula, Exponential Regression Equation(y) = a x b x = 8.3028 x 0.9935x


english Calculators and Converters


Sitemap