Definition:
Correlation matrix is a type of matrix, which provides the correlation between whole pairs of data sets in a matrix.
Example :
Find out the correlation matrix from the given 3 X 3 matrix?
Matrix,
Given:
n = 3
x̄ = (1 + 4 + 7) / 3 = 4
ȳ = (6 + 5 + 4) / 3 = 5
z̄ = (9 + 5 + 1) / 3 = 5
Solution :
Step : 1
First, let us calculate the matrix value for Sum of Squared Matrix.
Sum of Squared Matrix
= 1/ (n-1) | SSxx | SSxy | SSxz |
SSyx | SSyy | SSyz |
SSzx | SSzy | SSzz |
= 1/ (3-1) | (1-4)2 + (4-4)2 + (7-4)2 | (1-4)x(6-5) + (4-4)x(5-5) + (7-4)x(4-5) | (1-4)x(9-5) + (4-4)x(5-5) + (7-4)x(1-5) |
(6-5)x(1-4) + (5-5)x(4-4) + (4-5)x(7-4) | (6-5)2 + (5-5)2 + (4-5)2 | (6-5)x(9-5) + (5-5)x(5-5) + (4-5)x(1-5) |
(9-5)x(1-4) + (5-5)x(4-4) + (1-5)x(7-4) | (9-5)x(6-5) + (5-5)x(5-5) + (1-5)x(4-5) | (9-5)2 + (5-5)2 + (1-5)2 |
= 1/2 | 9 + 0 + 9 | -3 + 0 + -3 | -12 + 0 + -12 |
-3 + 0 + -3 | 1 + 0 + 1 | 4 + 0 + 4 |
-12 + 0 + -12 | 4 + 0 + 4 | 16 + 0 + 16 |
= 1/2 | 18 | -6 | -24 |
-6 | 2 | 8 |
-24 | 8 | 32 |
= | 9 | -3 | -12 |
-3 | 1 | 4 |
-12 | 4 | 16 |
Step : 2
Calculate the matrix value of Correlation Matrix.
= | 1 | Pxy | Pxz |
Pyx | 1 | Pyz |
Pzx | Pzy | 1 |
= | 1 | -3 /√(9x1) | -12 /√(9x16) |
-3 /√(1x9) | 1 | 4 /√(1x16) |
-12 /√(16x9) | 4 /√(16x1) | 1 |
= | 1 | -3/3 | -12/12 |
-3/3 | 1 | 4/4 |
-12/12 | 4/4 | 1 |