Cumulative Poisson Distribution Table
A cumulative poisson distribution is used to calculate the probability of getting atleast n successes in a poisson experiment. The below given table shows cumulative probability functions of Poisson Distribution with various α values. Each columns corresponds to various values for the mean (λ) of a Poisson variable. The table below gives the probability of a Poisson random variable X with mean = λ which is less than or equal to x. For example, a Poisson variable of mean 0.7 is 1 or less with probability 0.844.
x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.905 0.819 0.741 0.670 0.607 0.549 0.497 0.449 0.407 0.368
1 0.995 0.982 0.963 0.938 0.910 0.878 0.844 0.809 0.772 0.736
2 1.000 0.999 0.996 0.992 0.986 0.977 0.966 0.953 0.937 0.920
3 1.000 1.000 1.000 0.999 0.998 0.997 0.994 0.991 0.987 0.981
4 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 0.333 0.301 0.273 0.247 0.223 0.202 0.183 0.165 0.150 0.135
1 0.699 0.663 0.627 0.592 0.558 0.525 0.493 0.463 0.434 0.406
2 0.900 0.879 0.857 0.833 0.809 0.783 0.757 0.731 0.704 0.677
3 0.974 0.966 0.957 0.946 0.934 0.921 0.907 0.891 0.875 0.857
4 0.995 0.992 0.989 0.986 0.981 0.976 0.970 0.964 0.956 0.947
5 0.999 0.998 0.998 0.997 0.996 0.994 0.992 0.990 0.987 0.983
6 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.997 0.995
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
0 0.111 0.091 0.074 0.061 0.050 0.041 0.033 0.027 0.022 0.018
1 0.355 0.308 0.267 0.231 0.199 0.171 0.147 0.126 0.107 0.092
2 0.623 0.570 0.518 0.469 0.423 0.380 0.340 0.303 0.269 0.238
3 0.819 0.779 0.736 0.692 0.647 0.603 0.558 0.515 0.473 0.433
4 0.928 0.904 0.877 0.848 0.815 0.781 0.744 0.706 0.668 0.629
5 0.975 0.964 0.951 0.935 0.916 0.895 0.871 0.844 0.816 0.785
6 0.993 0.988 0.983 0.976 0.966 0.955 0.942 0.927 0.909 0.889
7 0.998 0.997 0.995 0.992 0.988 0.983 0.977 0.969 0.960 0.949
8 1.000 0.999 0.999 0.998 0.996 0.994 0.992 0.988 0.984 0.979
9 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.994 0.992
10 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
0 0.015 0.012 0.010 0.008 0.007 0.006 0.005 0.004 0.003 0.002
1 0.078 0.066 0.056 0.048 0.040 0.034 0.029 0.024 0.021 0.017
2 0.210 0.185 0.163 0.143 0.125 0.109 0.095 0.082 0.072 0.062
3 0.395 0.359 0.326 0.294 0.265 0.238 0.213 0.191 0.170 0.151
4 0.590 0.551 0.513 0.476 0.440 0.406 0.373 0.342 0.313 0.285
5 0.753 0.720 0.686 0.651 0.616 0.581 0.546 0.512 0.478 0.446
6 0.867 0.844 0.818 0.791 0.762 0.732 0.702 0.670 0.638 0.606
7 0.936 0.921 0.905 0.887 0.867 0.845 0.822 0.797 0.771 0.744
8 0.972 0.964 0.955 0.944 0.932 0.918 0.903 0.886 0.867 0.847
9 0.989 0.985 0.980 0.975 0.968 0.960 0.951 0.941 0.929 0.916
10 0.996 0.994 0.992 0.990 0.986 0.982 0.977 0.972 0.965 0.957
11 0.999 0.998 0.997 0.996 0.995 0.993 0.990 0.988 0.984 0.980
12 1.000 0.999 0.999 0.999 0.998 0.997 0.996 0.995 0.993 0.991
13 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.996
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
x 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
0 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.011 0.007 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
2 0.043 0.030 0.020 0.014 0.009 0.006 0.004 0.003 0.002 0.001
3 0.112 0.082 0.059 0.042 0.030 0.021 0.015 0.010 0.007 0.005
4 0.224 0.173 0.132 0.100 0.074 0.055 0.040 0.029 0.021 0.015
5 0.369 0.301 0.241 0.191 0.150 0.116 0.089 0.067 0.050 0.038
6 0.527 0.450 0.378 0.313 0.256 0.207 0.165 0.130 0.102 0.079
7 0.673 0.599 0.525 0.453 0.386 0.324 0.269 0.220 0.179 0.143
8 0.792 0.729 0.662 0.593 0.523 0.456 0.392 0.333 0.279 0.232
9 0.877 0.830 0.776 0.717 0.653 0.587 0.522 0.458 0.397 0.341
10 0.933 0.901 0.862 0.816 0.763 0.706 0.645 0.583 0.521 0.460
11 0.966 0.947 0.921 0.888 0.849 0.803 0.752 0.697 0.639 0.579
12 0.984 0.973 0.957 0.936 0.909 0.876 0.836 0.792 0.742 0.689
13 0.993 0.987 0.978 0.966 0.949 0.926 0.898 0.864 0.825 0.781
14 0.997 0.994 0.990 0.983 0.973 0.959 0.940 0.917 0.888 0.854
15 0.999 0.998 0.995 0.992 0.986 0.978 0.967 0.951 0.932 0.907
16 1.000 0.999 0.998 0.996 0.993 0.989 0.982 0.973 0.960 0.944
17 1.000 1.000 0.999 0.998 0.997 0.995 0.991 0.986 0.978 0.968
18 1.000 1.000 1.000 0.999 0.999 0.998 0.996 0.993 0.988 0.982
19 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.994 0.991
20 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.997 0.995
21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000