Bessel Function Integral Table

Bessel integral function of the first kind table to view the Bessel values. The column indicates the Bessel integral function of first kind [Jn(x)] and the row indicates the number of terms.

n012345678910
Jn(1)0.76520.44010.11490.01960.00250.00160.00010000
Jn(2)0.22390.57670.35280.12890.0340.00590.0010.0001000
Jn(3)-0.26010.33910.48610.30910.1320.0430.01140.00150.000300
Jn(4)-0.3971-0.0660.36410.43020.28110.13210.04910.01520.00280.00060.0002
Jn(5)-0.1776-0.32760.04660.36480.39120.26110.1310.05340.01840.00620.0015
Jn(6)0.1506-0.2767-0.24290.11480.35670.36210.24580.12960.05650.02120.007
Jn(7)0.3001-0.0047-0.3014-0.16760.15780.34790.33920.23360.1280.05890.0235
Jn(8)0.17170.2346-0.113-0.2911-0.10540.18580.33760.32060.22350.12630.0608
Jn(9)-0.09030.24530.1448-0.1809-0.2655-0.0550.20430.32750.30510.21490.1247
Jn(10)-0.24590.04350.25460.0584-0.2196-0.2341-0.01450.21670.31790.29190.2075
Jn(11)-0.1712-0.17680.1390.2273-0.015-0.2383-0.20160.01840.2250.30890.2804
Jn(12)0.0477-0.2234-0.08490.19510.1825-0.0735-0.2437-0.17030.04510.23040.3005
Jn(13)0.2069-0.0703-0.21770.00330.21930.1316-0.118-0.2406-0.1410.0670.2335
Jn(14)0.17110.1334-0.152-0.17680.07620.22040.0812-0.1508-0.232-0.11430.085
Jn(15)-0.01420.20510.0416-0.194-0.11920.13050.20610.0345-0.174-0.22-0.0901

The bessel function was generalized by Friedrich Bessel and defined by Daniel Bernoulli.


english Calculators and Converters


Sitemap