English

# All Probability-functions Formulas List

## Beta Function

Formula Used:

Where,
Β - Beta Function
x - X Value
y - Y Value

## Incomplete Beta Function

#### Formula:

Where,

Β - Beta Function
a - a Value
b - b Value
x - Upper Limit

## Gamma Function

#### Formula:

Where,

Γ - Gamma Function
z - Z Value

## Incomplete Gamma Function

Formula Used:

Where,
Γ - gamma Function
u - Complex variable
v - Real value

## Gaussian Error (ERF) and Complementary Error (ERFC) Function

#### Formula:

Gaussian Error Value (erf)

Gaussian Complementary Error Value (erfc)

## Digamma Function

#### Formula:

Where,

Γ - Gamma Function
x - X Value

## Hankel Function

#### Formula:

Where,

Jα = First Kind Bessel Function
Yα = Second Kind Bessel Function

## Riccati Bessel Function

#### Formula:

Where,

Jn = First Kind Bessel Functions
Yn = Second Kind Bessel Functions

## Spherical Bessel Function

#### Formula:

Where,

Jn - First Kind of Bessel Function
Yn - Second Kind of Bessel Function

## Spherical Hankel Function

Formula:

Where,

jn - First Kind of Hankel Function
yn - Second Kind of Hankel Function

## Ellipticgamma Function

#### Formula:

Where,

Γ - Gamma Function
z, p, and q - Complex Variables

## Log Gamma Distribution

Formula Used:

Where,
Γ - gamma Function
z - Complex Variable

## PSI Polygamma Function

Formula Used:

Where,
Γ - gamma Function
z - Complex Variable
m - Order of Ploygamma function

## Reciprocal Gamma Function

Formula Used:

Where,
Γ - gamma Function
z - Complex Variable

## Trigamma Function

Formula Used:
Second Kind Polygamma =

Where,
z - Complex Variable

## Normal CDF

#### Formula:

Probability Function f(x, μ, σ) = 1 / (√ (2 x Π) x a x e(-1 / 2 x ((b - c) / a)2)
Lower cumulative distribution P(x, μ, σ) = -∞x f(x, μ, σ) dt
Upper cumulative distribution Q(x, μ, σ) = x f(x, μ, σ) dt

Where,

a = Standard Deviation σ
b = Percentile x
c = Mean μ

## Significance Level

#### Formula:

For One Tailed
l = 100 - c

For Two Tailed
l = (100 - c) / 2

Where,

l = Significance Level
c = Confidence Level