The bisector of an angle is the locus of points on the plane that are equidistant from the rays that form the angle.
The coefficients values are as follows A1=3,B1=-4,C1=5,A2=6,B2=8,C2=1.Find the Angle bisector.
Coefficient values A1=3,B1=-4,C1=5,A2=6,B2=8,C2=1
Angle bisector
|3X-4Y+5|/√32+42 | = | +|6X+8Y+1|/√62+82 |
(3X-4Y+5)/5 | = | (6X+8Y+1)/10 |
2(3X-4Y+5) | = | 1(6X+8Y+1) |
6x-8y+10 | = | 6x+8y+1 |
=> | -16y+9=0 | |
|3X-4Y+5|/√32+42 | = | -|6X+8Y+1|/√62+82 |
(3X-4Y+5)/5 | = | (6X+8Y+1)/10 |
2(3X-4Y+5) | = | -1(6X+8Y+1) |
6x-8y+10 | = | -6x-8y-1 |
=> | 12x+11=0 |
Angle bisector is -16y+9=0, 12x+11=0