Regression Tutorial

Simple/Linear Regression Tutorial

Regression Definition:

A regression is a statistical analysis assessing the association between two variables. It is used to find the relationship between two variables.

Regression Formula:

Regression Equation(y) = a + bx Slope(b) = (NΣXY - (ΣX)(ΣY)) / (NΣX2 - (ΣX)2) Intercept(a) = (ΣY - b(ΣX)) / N
where

x and y are the variables. b = The slope of the regression line a = The intercept point of the regression line and the y axis. N = Number of values or elements X = First Score Y = Second Score ΣXY = Sum of the product of first and Second Scores ΣX = Sum of First Scores ΣY = Sum of Second Scores ΣX2 = Sum of square First Scores

Regression Example:

To find the Simple/Linear Regression of

X ValuesY Values
603.1
613.6
623.8
634
654.1

To find regression equation, we will first find slope, intercept and use it to form regression equation.

Step 1:

Count the number of values. N = 5

Step 2:

Find XY, X2 See the below table

X ValueY ValueX*YX*X
603.160 * 3.1 = 18660 * 60 = 3600
613.661 * 3.6 = 219.661 * 61 = 3721
623.862 * 3.8 = 235.662 * 62 = 3844
63463 * 4 = 25263 * 63 = 3969
654.165 * 4.1 = 266.565 * 65 = 4225
Step 3:

Find ΣX, ΣY, ΣXY, ΣX2. ΣX = 311 ΣY = 18.6 ΣXY = 1159.7 ΣX2 = 19359

Step 4:

Substitute in the above slope formula given. Slope(b) = (NΣXY - (ΣX)(ΣY)) / (NΣX2 - (ΣX)2) = ((5)*(1159.7)-(311)*(18.6))/((5)*(19359)-(311)2) = (5798.5 - 5784.6)/(96795 - 96721) = 13.9/74 = 0.19

Step 5:

Now, again substitute in the above intercept formula given. Intercept(a) = (ΣY - b(ΣX)) / N = (18.6 - 0.19(311))/5 = (18.6 - 59.09)/5 = -40.49/5 = -8.098

Step 6:

Then substitute these values in regression equation formula Regression Equation(y) = a + bx = -8.098 + 0.19x. Suppose if we want to know the approximate y value for the variable x = 64. Then we can substitute the value in the above equation. Regression Equation(y) = a + bx = -8.098 + 0.19(64). = -8.098 + 12.16 = 4.06 This example will guide you to find the relationship between two variables by calculating the Regression from the above steps.

Related Calculator:

This tutorial will help you dynamically to find the Simple/Linear Regression problems.